

Extremely Durable and Low-Cost Concrete: Ultralow Binder Content and Ultrahigh Tensile Ductility

PI: Yu Qiao, UC San Diego

Co-PI: Mo Li, UC Irvine

Project Vision

- Using advanced binder to drastically improve the concrete durability
- Using compaction to largely reduce the binder content (much reduced cost, enhanced strength and ductility, reduced carbon emission, etc.)

Total Project Cost:	\$1.3M
Length	24 mo.

The Concept

- 1~3% microfibers drastically improve the concrete durability
- Compaction (30~100 MPa) greatly reduces the binder content to only 10~15%, to
 - ➤ Reduce the cost (~OPC)
 - Further improve the ductility and strength
 - > Reduce carbon emission
 - Reduce the use of class-F fly ash (if geopolym binder)

The Team

Research & Development

Prototyping & Commercialization

Project Objectives

- Q4: Proof of concept: compaction formation (UCSD)
 - Low binder content (10~15%, compared to ~25% in regular concrete)
 - Adequate strength (>5,000 psi)
- Q4: Advanced binders (UCI)
 - Ductility at least 10X
- Q8: Production of 500-lb demonstration units (UCSD, UCI)
- ▶ T2M (seeking partners/collaborators):
 - Market niche: precast parts (1/7 of the total construction materials market)
 - Licensing vs. start up

Results (I)

- An aluminum box was developed
- Compaction
 was performed
 section by
 section, by
 using a regular
 press

Results (I)

- Regular geopolymer binder
- Binder content: only 14%
 (~25% in regular geopolymer concrete)

Sample number

Results (II)

Advanced binders

Results (II)

Porosity characterization

6. Weigh the

assembly

Challenges and Risks

- In the past, the high cost limits the wide use of advanced concrete materials
- In our R&D, we aim to develop low-cost, high-performance concrete by
 - Greatly reducing the binder content
 - Simplifying the mixing/processing procedure
 - The goal is to keep the total cost below \$65/ton
- Main risk: scalability (fiber mixing, compaction)
- Solution: By Q8, we will demonstrate that full-size (500 lb) samples can be produced in a mass production manner, relevant to the precast market

Potential Partnerships

- We are seeking potential industrial and T2M partners
 - Licensing vs. start up
- To other teams: If you have a great binder, we may compact the material to
 - Densify the microstructure and greatly improve the strength/ductility, or
 - Largely reduce the binder content, with the strength unchanged

November 6, 2020 Insert Presentation Name

Summary Slide

- Ultralow-binder-content durable concrete (UDC)
 - Compaction: a very low binder content (10~15%) → low materials cost, green (low carbon emission), less demanding for class F fly ash (if geopolymer binder), highly densified microstructure, high strength, high ductility
 - Microfibers: ultrahigh ductility
- Our team
 - Yu Qiao, UCSD (inventor of the compaction formation technique)
 - Mo Li, UCI (advanced binders)
 - We are seeking industrial/T2M partners
- Project goal
 - Prove the concept (500-lb samples)
 - Prove the cost efficiency (<\$65/ton, including labor, equipment, waste)

November 6, 2020 Insert Presentation Name